Amorphous Phosphorus Filled Graphene Paper for Ultrastable Sodium-Ion Energy Storage

Chao Zhang1*, Xi Wang2, Qifeng Liang3, Xizheng Liu4, Qunhong Weng5, Yoshio Bando6, Jie Tang6 and Dmitri Golberg1,6*

1 Queensland University of Technology, Brisbane, Australia
2 School of Sciences, Beijing Jiaotong University, Beijing, P. R. China
3 Department of Physics, Shaoxing University, Shaoxing, P. R. China
4 Tianjin University of Technology, Xiqing, Tianjin, P. R. China
5 Leibniz Institute for Solid State and Materials Research, Dresden, Germany
6 National Institute for Materials Science, Tsukuba, Japan

As a very promising anode material for future sodium-ion energy batteries, phosphorus (P) has recently attracted a lot of interest due to its high theoretical capacity of 2596 mAh/g. The core disadvantage of a P anode is its low conductivity and rapid structural degradation caused by the large volume expansion (>490\%) during cycling.1-2

We renovated the anode structure by using a special methodology and fabricated a flexible paper made of nitrogen-doped graphene and amorphous phosphorus that effectively solves this problem. The restructured anode exhibits an ultra-stable cyclic performance and excellent rate capability (809 mAh/g at 1500 mA/g). The excellent structural integrity of the novel anode was further visualized during cycling by using in situ experiments inside a high-resolution transmission electron microscope (HRTEM), and the associated sodiation/desodiation mechanism was also thoroughly studied. Finally, Density Functional Theory (DFT) calculations confirmed that the N-doped graphene not only contributes to an increase in capacity for sodium storage, but is also beneficial in regards to improved rate performance of the anode.3 The as designed flexible sodium-ion energy storage can be used in consumer electronics as well as biomedical applications such as sensing devices attached to skins.

References

Biographic Details
Chao Zhang
Title: Research Associate
Queensland University of Technology, Australia:
Phone: +61 7 3138 2439 E-mail: c51.zhang@qut.edu.au
Research interests: in situ TEM, energy storage, flexible optoelectronics